3.7.18 \(\int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\) [618]

Optimal. Leaf size=138 \[ \frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+
a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*
d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c
)^(1/2)/(a+b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3034, 4121, 3943, 2742, 2740, 3944, 2886, 2884} \begin {gather*} \frac {2 A \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 B \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

(2*A*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a +
b*Sec[c + d*x]]) + (2*B*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[
Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4121

Int[(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*
(b_.) + (a_)], x_Symbol] :> Dist[A, Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B/d, Int[
(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0
] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\left (A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {\left (A \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (B \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ &=\frac {\left (A \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (B \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ &=\frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 26.50, size = 9363, normalized size = 67.85 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 20.15, size = 273, normalized size = 1.98

method result size
default \(\frac {2 \left (-1+\cos \left (d x +c \right )\right ) \left (A \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right )-B \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right )+2 B \EllipticPi \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \frac {a +b}{a -b}, \frac {i}{\sqrt {\frac {a -b}{a +b}}}\right )\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}}{d \sqrt {\frac {a -b}{a +b}}\, \left (b +a \cos \left (d x +c \right )\right ) \left (\frac {1}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{2}}\) \(273\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d*(-1+cos(d*x+c))*(A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))-B*Ellipt
icF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))+2*B*EllipticPi((-1+cos(d*x+c))*((a-b)
/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2)))*cos(d*x+c)^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1
/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/(1/(1+cos(d*x+c)))^(3/2
)/sin(d*x+c)^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \sec {\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))/(sqrt(a + b*sec(c + d*x))*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________